Search the Community

Showing results for tags 'Flavia'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Community
    • Gadget Factory Reboot 2022
    • Gadget Factory
    • Documentation
    • FPGA Discussions
    • Community Projects
  • Soft Processors
    • Migen/LiteX/Risc-V
    • ZPUino
    • J1 Forth
    • AVR8 Soft Processor
  • Electronics
    • Modules
  • Papilio Platform (Retired)
    • Papilio General Discussion
    • Papilio Pro
    • Papilio One
    • Papilio DUO
    • Papilio Wings
    • DesignLab IDE
    • DesignLab Libraries
    • RetroCade Synth
    • Papilio Arcade
    • Papilio Loader Application
    • Papilio Logic Sniffer
    • Pipistrello
    • Retired
  • Open Bench (Retired)
    • Open Bench Logic Sniffer at Dangerous Prototypes
    • OpenBench Logic Sniffer at Gadget Factory
  • GadgetBox Universal IoT Hardware (Retired)
    • GadgetBox General Discussion
  • Gadget Factory Internal Category


  • Papilio Platform
    • Papilio One
    • Papilio Plus
    • Papilio Wings
    • LogicStart MegaWing
    • ZPUino
    • Papilio Pro
  • Papilio Arcade
  • RetroCade Synth
  • Logic Sniffer
  • FPGAs
  • DesignLab
    • Example Projects
    • Libraries


  • Papilio FPGA
    • Papilio UCF (User Constraint) Files
    • Papilio Bit Files
  • Papilio Arcade
  • RetroCade Synth
  • General
  • Beta (Test) Releases
  • Books

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start





Website URL







Found 1 result

  1. Flavia, the Free Logic Array, is a programmable device intended primarily as a teaching tool for FPGAs and CPLDs. Unlike every commercial device I'm aware of, Flavia's tool suite is free-as-in-liberty open-source software (FLOSS). This means it can run on platforms other than x86 PCs, including Raspberry Pi (tested) and BeagleBoard/Bone (not fully tested yet). Flavia is a "CPLD in an FPGA", which uses FPGA look-up tables (LUTs) to implement both logic and routing. Since Xilinx documents ways to find the locations of your LUTs and flip-flops in their otherwise undocumented bitstreams, it's possible to program those LUTs to make a reasonably nice CPLD that can be programmed using FLOSS tools. Flavia's first implementation uses the Papilio One 250K as its underlying FPGA. The 250K Spartan-3E FPGA has enough logic resources to make a useful CPLD and the FT2232D provides an easy programming interface for Flavia's software. If you're interested, take a look at my 'blog at element14, which has links to all the software and documentation. This post has been promoted to an article