Popular Content

Showing content with the highest reputation on 04/04/2020 in Posts

  1. 1 point
    I just wanted to show off my latest FPGA project, this is not currently Papilio based but I'm contemplating doing a megawing for the Papilio One/Pro if there is enough interest, I don't want to manufacture it but I would open source the design. For the time being this is based on the little Altera Cyclone II boards that can be had for about $13, cheap enough to integrate into projects. I designed a daughterboard that plugs onto these and holds a triple DAC, op-amps with gain and offset adjustments for the X and Y deflection, a DC-DC converter to provide the +/-15V rails for the amps, an audio amplifier with volume control and I tossed in a I2C EEPROM with hopes of using it to emulate the EAROM that stores the high scores in Asteroids Deluxe. Initially I tried using delta-sigma DACs for the deflection as Spritesmods did with his Black Widow project but I was not happy with the result. Then I got the idea to use a VGA DAC since it's a high quality high speed 10 bit triple DAC and there was one on my DE2 dev board that I used for prototyping. It worked perfectly so I carried it over to this design. The monitor is based on a cheap 5" B&W CRT TV with the vertical winding of the deflection yoke rewound and a custom electronics, the initial deflection board was designed by Fred Kono a number of years ago but I'm working on a cleaner and more integrated solution. I've also tested this FPGA board with a G05 and a 19K6101 vector monitor in my fullsized cabinets and it drives them fine. As it stands, I've got Asteroids Deluxe working perfectly using code originally from fpgaarcade.com modified to eliminate the rasterizer and ported to my hardware. As of yesterday I also have the original Asteroids working except I have not modeled the analog circuits for many of the sounds which Deluxe replaced with a POKEY chip. If anyone is interested in helping out with this project there are a few items on the to-do list that I could use a hand with, in the process I'd be happy to post the code I have and provide all of the details for anyone who wants to replicate this to do so. Eventually my plan is to build a few miniature arcade cabinets replicating the original classic games in small desktop form. To do: - Implement missing sound effects in Asteroids, all of the control logic is there and working, still need the thump-thump, ship and saucer firing sound and saucer warble. - Implement EAROM emulation, I'm not entirely certain how feasible this is but I included an EEPROM because there was space. It's trivial to use a block RAM in place of the EAROM but that needs to be backed up to and restored from the serial EEPROM. - Get Lunar Lander working on the platform, I made an initial attempt and was not successful, I plan to give it another go. I've brought out the I2C bus on my board with thoughts of using a I2C ADC for the thrust input. - Implement Omega Race hardware, this is a much larger task since it's a completely different hardware platform. It uses the same 10 bit DACs as the Atari games and the hardware is of similar complexity. One last thing worth mentioning, these little CRT TVs are currently fairly easy to find but they are going away fast. They are essentially useless to most people since the death of analog TV but they are perfect for projects like this, a real CRT is the only way games like this look right at all, if you come across these things pick them up while you can because nobody is making CRTs anymore and they are disappearing fast.
  2. 1 point
    That's fine, thanks for giving it a go. I'll take a look over the weekend and upload a ready to go configuration.
  3. 1 point
    I found Free Range VHDL to be an excellent book, and it's free in digital form too. Anyway back to the Lunar Lander issue, I *think* I accounted for the differences you mention. Attached are snippets of the input 0 buffers for both Asteroids and Lunar Lander. Note that Asteroids uses a 74LS251 which is a selector/multiplexer with an inverted output read on D7. Lunar Lander on the other hand uses a 74LS367 tristate buffer which is non-inverting and read on D7, D6, D2, D1 and D0, both are active when SINP0 goes low. Now for the code, here's a snippet from Asteroids: -- self test, slam, diag step, fire, hyper control_ip0_l <= "11111"; control_ip0_l(4) <= SELF_TEST_SWITCH_L; control_ip0_l(3) <= '1'; -- slam control_ip0_l(2) <= '1'; -- diag step control_ip0_l(1) <= BUTTON(4); -- fire control_ip0_l(0) <= BUTTON(5); -- shield test_l <= SELF_TEST_SWITCH_L; p_input_sel : process(c_addr, dips_p6_l, control_ip0_l, control_ip1_l, clk_3k, halt) begin control_ip0_sel <= '0'; case c_addr(2 downto 0) is when "000" => control_ip0_sel <= '1'; when "001" => control_ip0_sel <= not clk_3k; when "010" => control_ip0_sel <= not halt; when "011" => control_ip0_sel <= not control_ip0_l(0); when "100" => control_ip0_sel <= not control_ip0_l(1); when "101" => control_ip0_sel <= not control_ip0_l(2); when "110" => control_ip0_sel <= not control_ip0_l(3); when "111" => control_ip0_sel <= not control_ip0_l(4); when others => null; end case; p_cpu_data_mux : process(c_addr, ram_dout, rom_dout, vg_dout, zpage_l, pmem_l, vmem_l, sinp0_l, control_ip0_sel, sinp1_l, control_ip1_sel, dpts_l, dips_ip_sel) begin c_din <= (others => '0'); if (sinp0_l = '0') then c_din <= control_ip0_sel & "1111111"; elsif (sinp1_l = '0') then c_din <= control_ip1_sel & "1111111"; elsif (dpts_l = '0') then c_din <= "111111" & dips_ip_sel; elsif (zpage_l = '0') then c_din <= ram_dout; elsif (pmem_l = '0') then c_din <= rom_dout; elsif (vmem_l = '0') then c_din <= vg_dout; end if; end process; Note that each of the signals in the first section is inverted, accounting for the inverted output of the selector/multiplexer. Now looking at a snippet (with some irrelevant bits removed for clarity) from Lunar Lander: p_input_registers : process begin wait until rising_edge(CLK_6); -- diag step, 3khz, slam, self test, halt control_ip0_l <= "11111"; control_ip0_l(4) <= '1'; -- diag step control_ip0_l(3) <= clk_3K; -- 3 khz control_ip0_l(2) <= SELF_TEST_SWITCH_L; control_ip0_l(1) <= '1'; -- slam control_ip0_l(0) <= halt; end process; p_cpu_data_mux : process(c_addr, ram_dout, rom_dout, vg_dout, zpage_l, pmem_l, vmem_l, sinp0_l, control_ip0_l, sinp1_l, control_ip1_sel, dpts_l, potin_l, potval, dips_ip_sel) begin c_din <= (others => '0'); if (sinp0_l = '0') then c_din <= control_ip0_l(4 downto 3) & "111" & control_ip0_l(1) & control_ip0_l(2) & control_ip0_l(0); elsif (sinp1_l = '0') then c_din <= control_ip1_sel & "1111111"; elsif (dpts_l = '0') then c_din <= "111111" & dips_ip_sel; elsif (potin_l = '0') then c_din <= potval; elsif (zpage_l = '0') then c_din <= ram_dout; elsif (pmem_l = '0') then c_din <= rom_dout; elsif (vmem_l = '0') then c_din <= vg_dout; end if; end process; Note that in this case there is no intermediate step so I'm not inverting those signals, and rather than the signals being read one at a time onto bit 7 of the data bus, they are all fed simutaneously to the CPU data in when sinP0_l is low.
  4. 1 point
    Well here's where I am with this so far, I'm posting these in case I get hit by a bus or something, one of my pet peeves is when people show off cool projects but then never release the code, so here's the code. Currently this is set up for an Altera FPGA but it was originally written for Xilinx and I do intend to port it back to the Papilio, doing so is relatively easy. These are set up to work with the program ROMs in an external parallel EEPROM because the little EP2C5T155C8 I'm using lacks sufficient block RAM to hold all the ROMs internally but the FPGA on the Papilio boards is large enough that this is not needed. Anyway here's the state of things: Asteroids Deluxe - Fully working, no high score save yet but that was never implemented by MikeJ who originally released this on fpgaarcade.com Asteroids - Works but several of the sounds are missing which really detracts from the game. If someone wants to work on modeling the missing sound circuits that would be cool. Lunar Lander - This is not working at all yet and I'm banging my head against the wall trying to determine why. The hardware is very, very similar to that of Asteroids, more ROM, less RAM, one of the input banks is done differently, it also has an analog input for the thrust control but that shouldn't be necessary for the attract mode to run. I could really use a bit of help getting this to run at all at which point I'll work on the details. Currently I've got the watchdog disabled because otherwise the reset keeps pulsing. Trying to figure this out has distracted me from finalizing the hardware revisions and polishing up the other two games. I printed out the schematics, highlighted all the changes I could find and then methodically implemented them in the code but it's possible I missed something somewhere. Asteroids Deluxe.zip Asteroids.zip Lunar Lander.zip